AMS Meeting - 10/23/09

Special Guest: Gino Izzi, NWS Chicago/Romeoville

7:00 - Announcements:
Calendar pictures
Severe Weather Symposium – Discount for AMS members

7:10 – Gino Izzi: “Winter Weather Forecasting: The Cold, the Snowy, and the Icy”
How to forecast snow?
-What type
-How much of each type
-When
-Be familiar with models & biases
-Recognize synoptic patterns conducive to snow
-How well does model resolve mesoscale features?
 -Don’t focus too much on details – focus on synoptic
How much will accumulate?
 -How much QPF expected?
 -How much of QPF will fall as snow?
 -Adequate surface temps?
 -What are snow-to-liquid ratios?
Forecasting precipitation type
- All about the vertical temperature profile
 -Temperature profile is dynamic – will change
 -Evaporation
 -Melting
 -Thermal advection
 -Vertical motion
 -Solar radiation
- Cloud microphysics/ice nuclei
Partial Thickness Method/Critical Thickness Method
 -Can help determine type of precip that will reach the surface
 -Critical thickness values roughly equal an average temperature of 0 Celsius
 through a given layer
Pros:
 -Great for getting the “big picture” over a large area
 -Relatively simple
Cons:
 -Narrow warm layers/deep isothermal layers can cause problems
 -Problems during transition zones between seasons
 -Need to use different thicknesses
 -Ignores cloud microphysics
Top-Down Method
 -Starts at the top of the cloud layer and works down
1) Upper levels: Is there ice in the cloud? (Ice nuclei must be present for snow)
 - At -20 C, ice almost guaranteed in cloud
2) Middle/warm layer: Does ice survive?
3) Surface: What happens to the precipitation before it reaches the surface?
 - If no ice, look at surface temps:
 - Surface > 0 °C: rain, drizzle
 - Surface < 0 °C: freezing rain/drizzle
 - If ice in cloud, then look at warm layer:
 - < 1 °C: little or no melting
 - 1-3 °C: partial melting
 - Amount of melting dependent on precip intensity & depth of warm layer
 - > 3 °C: complete melting
 - Below warm layer:
 - Temp in warm layer & surface layer:
 - < 1 °C
 - Sfc < 0: Snow
 - Sfc > 0: Rain/mix
 - < 1-3 °C
 - Sfc < 0: Sleet/mix
 - Sfc > 0: Rain/drizzle
 - > 3 °C
 - Sfc < 0: Freezing rain/Freezing drizzle
 - Sfc > 0: Rain/drizzle
 - Look for dry intrusions – can bust snow forecasts
 - Can also introduce steeper lapse rates
 - May make atmosphere less stable
 - Snow axis to the left/north of dry slot: heaviest snow

Forecasting Snow Accumulations
 - Changing precipitation type = lower snow accumulations
 - Accumulation is a function of QPF and snow:liquid ratio (SLR)
 - SLRs are dynamic and may change
 - Can use sfc temps to predict ratios
 - “Dendritic growth zone”: -12 °C to -16 °C
 - Highest QPF
 - Best accumulating snow
 - Depends on ground temperature, surface temperature, and wind strength

Lake-Effect Snow Forecasting
 - Based largely on experience
 - Use empirical methods to supplement models

9:10pm – End Meeting