AMS Meeting - 3/2/10

COD-Chicago AMS Joint Meeting
Special Guest: Victor Gensini, NIU Grad, future PhD candidate at Georgia

7:30pm – Announcements
 Chicago AMS:
 Winter Wx Forecasting seminar
 Chicago AMS Banquet
 Donation from Chicago AMS to COD AMS - $400
 COD AMS:
 Spotter Training
 Valparaiso Severe Wx Conference
 Des Moines Conference
 Tornado and Severe Storms seminar at Fermilab

7:45 – Victor Gensini: “Effects of the Cornbelt on Extreme Temperatures in the Midwest”

Background: Looking at hot days over 90 °F
 Avg. 24 hot days above 90
 Only 2 of the past 10 years have reached that level
 Lowest decadal total in 80 years
Common Midwest Question: Where have our 90 °F days gone?
 Inspired by Tom Skilling
 Chicago: Decreasing hot days since 1930s
 Other Midwest locations:
 Both rural and urban stations show a decreasing trend in “hot days”
 Regionally located – across the cornbelt region

Why regional climate trend?
 Enhanced summer evapotranspiration (ET) rates could act to lower max temps
 Agricultural practices are thought to have enhanced the movement of water vapor into
 the atmosphere, leading to a decrease in “hot days”
 However, precipitation values have remained unchanged since the 1930s across
 cornbelt

Could land use play a role?
 Corn and soybean crops dominate Midwest
 Crop yields have increased due to improved hybrids, irrigation, and increased use of
 fertilizers and pesticides
 No. of seeds planted per acre has nearly doubled
 Greatest ET occurs in July & August for soybeans
 If there is enough moisture in the air, the energy would be used for ET – would limit daily
 temps

Impact on Surface Dewpoint:
 Frequency of days with dewpoints >72 °F have increased in the Midwest
Where else is this detected?
 Increased summer “hot nights” >70 °F
 Smaller diurnal temperature ranges – due to amt of moisture in the air
The Changing Atmosphere:
 Circulation patterns could also limit frequency of “hot days”
 Recent cool summers ’04 & ’09 due to more days with upper level trough location over eastern US
Summary:
 Regional decrease in “hot days” related to increased ET
 Also consider:
 Sunshine levels
 Soil moisture levels

Questions

8:30pm – Meeting adjourned