AMS Meeting - 2/26/10

Speaker: Mark Ratzer, NWS Chicago/Romeoville
Special Event: Tour of KLOT National Weather Service office, Chicago/Romeoville

7:00pm - Mark Ratzer: “Winter Weather Forecasting”
Three main forecasting objectives:
 -Precip type
 -Locating areas of heavy snow
 -Snowfall amounts

Precip Type
 -“Where is rain/snow line?”
 -Use partial thicknesses to forecast precip type
 -Thickness of a layer related to temperature

-0 C thickness lines:
 1000-850 mb layer: 1300 m
 850-700 mb layer: 1540 m

- Look for overlapping patterns
 -Cold under warm air
 -Where does precip form? Where does it fall?

- Surface wet bulb temperature
 -Difficult to get snow if wet bulb is above freezing

Top-Down Method to Determine Precipitation Type
-Formation and growth of ice particles in clouds
-Environments affecting hydrometeors (precipitation)

Formation:
 -Cloud droplets from on cloud condensation nuclei (CCN)
 -Can exist as supercooled liquid below 0 C
 -Ice nuclei (IN) needed to form ice crystals
 -Most often clay and soil particles
 -Activation temperatures between -9 C & -15 C
 -Ice crystals cannot form without IN; drizzle results instead

Temps required for snow:
 -20 C – 100%
 -12 C – 70%
 -10 C – 60%
 -4 C – No ice

Ice crystals growth through:
 Deposition (-15 C good for this type of growth)
 Accretion
 Aggregation
 Feeder seeder mechanism

Determining precip type:
 Determine if ice exists
Look at warm layer – how much melting?
Look at surface layer – how will precip be affected?

Critical regions:
 Cooler mid levels (ice producing layer)
 Elevated warm air (melting)
 Surface arctic air mass (refreezing)

Problems:
 Surface temps
 Convection – increases depth of cloud, can remove warm layer or moist layer, can
develop precip at cooler temps aloft
 Advection – will change airmass
 Model forecast soundings – resolution problems
 Drizzle vs. rain

Determining Path of Heaviest Snow:
 Related to various features associated with upper level wave, midlevel vorticity axis and
 path of the low
 Generally 2 to the left of the vortmax track

Methods for Predicting Snowfall Amts:
 Garcia:
 -Uses isentropic surfaces and mixing ratios to determine max 12 hr snowfall
 Cook:
 -Looks at warm air advection at 200mb
 Magic chart:
 -Find where vertical displacement of 700mb height coincides with 850mb temps of -3 & -5
 LEMO method:
 -Function of 500mb vorticity & speed
 -Best for open, non-occluded systems

SLR (Snow-to-liquid Ratio):
 Fluffiest snow: Light winds and sfc temps around 15 F
 Climatological average for Chicago area: 13:1.

Some important influences:
 Instability – mesoscale effects can affect snowfall amts. Increases vertical motions.
 CU: Convectively unstable
 CSI: Conditional Symmetric Instability
 -“Slantwise” convection
 WSS: Weak Symmetric Stability
 Frontogenetical forcing:
 -Develops thermally direct circulation
- Gradient changes rapidly
- Can lead to destabilization
Lake Effect:
- Can destabilize due to sfc warming/moderation

8:30 – Tour of NWS