AMS Meeting - 10/23/09
Special Guest: Gino Izzi, NWS Chicago/Romeoville
7:00-Announcements:
Calendar pictures
Severe Weather Symposium - Discount for AMS members
7:10 - Gino Izzi: "Winter Weather Forecasting: The Cold, the Snowy, and the Icy"
How to forecast snow?
-What type
-How much of each type
-When
-Be familiar with models \& biases
-Recognize synoptic patterns conducive to snow
-How well does model resolve mesoscale features?
-Don't focus too much on details - focus on synoptic
How much will accumulate?
-How much QPF expected?
-How much of QPF will fall as snow?
-Adequate surface temps?
-What are snow-to-liquid ratios?
Forecasting precipitation type

- All about the vertical temperature profile
-Temperature profile is dynamic - will change
-Evaporation
-Melting
-Thermal advection
-Vertical motion
-Solar radiation
- Cloud microphysics/ice nuclei

Partial Thickness Method/Critical Thickness Method
-Can help determine type of precip that will reach the surface
-Critical thickness values roughly equal an average temperature of 0 Celsius through a given layer
Pros:
-Great for getting the "big picture" over a large area
-Relatively simple
Cons:
-Narrow warm layers/deep isothermal layers can cause problems
-Problems during transition zones between seasons
-Need to use different thicknesses
-Ignores cloud microphysics
Top-Down Method
-Starts at the top of the cloud layer and works down

1) Upper levels: Is there ice in the cloud? (Ice nuclei must be present for snow)

- At - 20 C , ice almost guaranteed in cloud

2) Middle/warm layer: Does ice survive?
3) Surface: What happens to the precipitation before it reaches the surface?

- If no ice, look at surface temps:
-Surface > 0 C: rain, drizzle
-Surface $<0 \mathrm{C}$: freezing rain/drizzle
-If ice in cloud, then look at warm layer:
$-<1$ C: little or no melting
-1-3 C: partial melting
-Amount of melting dependent on precip intensity \& depth of warm layer
-> 3 C : complete melting
-Below warm layer:
Temp in warm layer \& surface layer:
$-<1 \mathrm{C}$
-Sfc < 0 : Snow
-Sfc > 0 : Rain/mix
- < 1-3 C
-Sfc < 0 : Sleet/mix
-Sfc > 0 : Rain/drizzle
- > 3 C
-Sfc < 0 : Freezing rain/Freezing drizzle
-Sfc >0:Rain/drizzle
-Look for dry intrusions - can bust snow forecasts
-Can also introduce steeper lapse rates
-May make atmosphere less stable
-Snow axis to the left/north of dry slot: heaviest snow
Forecasting Snow Accumulations
-Changing precipitation type $=$ lower snow accumulations
-Accumulation is a function of QPF and snow:liquid ratio (SLR)
-SLRs are dynamic and may change
-Can use sfc temps to predict ratios
-"Dentritic growth zone": -12 C to -16 C
-Highest QPF
-Best accumulating snow
-Depends on ground temperature, surface temperature, and wind strength
Lake-Effect Snow Forecasting
-Based largely on experience
-Use empirical methods to supplement models
9:10pm - End Meeting

